
AA067 230 FRS RDCSLBMDSNW / 31
LAMINATED BEAMS OF ISOTROPIC OR ORTHOTROPIC MATERIALS SUBJECTED--ETCIU)
JUN 80 S CHE0G. T GERHARDT

UNCLASSIFIED FSRP-FPL-375 NL

U lIIIIEIIIIIE
IIIIIIIIIIIIII
llElE U



United States (1m
ra.rtue of minate Beams of Isotropic orAgriculture

Forest Service rthotropi Materials SubjectedForest
orao to Temperature Changec

Research ---Paper -
FPL 375

I 

.,

" 8,~0 7 28 08a ~ v,



ABSTRACT

This paper considers laminated beams with layers of different isotropic
or orthotropic materials fastened together by thin adhesives. The
stresses that result from subjecting each component layer of the beam
to different temperature or moisture stimuli which may also vary along
the length of the beam, are calculated. Two-dimensional elasticity
theory is used so that a wide range of problems, such as that of beams
composed of layers of orthotropic materials like wood, can be studied,
and accurate distributions of normal and shear stresses obtained. The
stress intensity along the bearing surfaces of the layers of the beam
is of particular importance because it is responsible for delamination
failures of laminated structural elements. The distributions of inter-
laminar normal and shear stresses measured along the longitudinal axis
of the beam indicate that high stress intensity occurs in the end zones
of the beam. Thus, delamination failure, when it occurs, will start at
the ends of the beam.
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LAMINATED BEAMS OF ISOTROPIC OR ORTHOTROPIC MATERIALS

SUBJECTED TO TEMPERATURE CHANGE

By

SHUN CHENG
1/

and
T. GERHARDT- /

INTRODUCTION

Beams are among the most widely used structural elements. The appli-
cation of laminated beams is expanding as they are studied and developed
by the forest products industry as well as other industries [1,2,31.
However, the delamination failure or deformation (bow, twist, warp, etc.)
induced in laminated beams by thermal or moisture stimuli has always
been of major concern.

The use of elementary beam theory in solution of this problem does not
allow evaluation of the shearing and normal stresses along the bearing
surface. Thus, these stresses cannot be determined from Timoshenko's
pioneering analysis [41 of a bimetal strip submitted to uniform heating
along its length. Notable contributions on this subject due to Boley
and others may be found in [5,6]. However, Grimado's analysis [7] is
a further consideration, extension, and significant improvement of the
same problem treated by Timoshenko. When Grimado [71 uses elementary
beam theory the effect of the bonding material between the two layers
of the strip is taken into account by treating the bonding material as
a third layer. Grimado deduces a sixth-order governing differential
equation 17] compared to the fourth-order biharmonic equation of plane
stress problems. It is shown in [71 that the sixth-order equation
reduces to a characteristic cubic equation which, unlike the biharmonic

I/ Engineer, Forest Products Laboratory, Forest Service, U.S.
Department of Agriculture, Madison, Wis., 53705, and Professor,
Department of Engineering Mechanics, University of Wisconsin-Madison,
53706. The Laboratory is maintained in cooperation with the University
of Wisconsin.

2/ Research Engineer, Westvaco Corp, Covington, Va 24426.

L _ .. . . . . . .. j 7



equation, may yield complex roots when solved. Thus, the analysis
presented in [7] is not necessarily as simple and direct as that based
on the two-dimensional elasticity theory used here.

In the current paper a beam of uniform cross-section made of layers
of different isotropic or orthotropic materials (such as wood, fastened
together by thin adhesives) is considered in accordance with two-
dimensional elastici:y theory. Instead of being subjected to a uniform
heating, treated previously [4,71, each layer may have different tem-
perature distributions along its length. The use of two-dimensional
elasticity theory should accurately yield the distribution of shear
and normal stresses in the beam. The interlaminar stresses between
layers are known to be mainly responsible for delamination failures
of laminated beams. If the stress distribution between layers can be
determined, such failures may be minimized or eliminated by an
appropriate choice of materials and beam-section properties. The use
of two-dimensional elasticity theory can be further justified in the
analysis of beams of orthotropic materials since in such a case
elementary beam theory cannot take into account the effects of material
properties on stresses and deformation.

It is difficult to accurately estimate the effect of the bonding material
on the stress distribution and deformation of the laminated structural
element without also treating the thin layers of the bonding material
in the same way that the component layers of primary concern are treated.
When the bonding material between two component layers is very thin,
the effect of the bonding material on the stress distribution and
deformation of laminated beams can be negligible. Thus, this paper
considers two cases: (1) beams having two component layers rigidly
bonded together and (2) beams having three layers where the bonding
material is treated as a third layer. These are analyzed so that the
effect of the bonding material can be revealed. Special attention is
given to the stress intensity along the bearing surfaces of the layers
of the laminated beams since it is responsible for delamination failures.
Only laminated beams subjected to thermal stimulus are treated in detail.
However, beams subjected to moisture stimulus can be analyzed in the
same way simply by replacing the linear coefficient of thermal expan-
sion multiplied by the change of temperature with a linear coefficient
of moisture shrinkage multiplied by a relative moisture content
[8, p. 3-111.

TWO-DIMENSIONAL THERMOELASTIC FORMULATION

Consider a beam of unit width which is made of two layers of different
materials fastened together by a thin adhesive, where each layer is
subjected to different arbitrary temperature distribution T.(x),

1
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(i = 1,2) along its length. The laminated structure is initially free
from stress. Let the x-axis be the longitudinal axis which lies along
the bonding line of the two layers of the beam of length, 2, total
thickness, h, and place the y-axis at the left end of the beam. Let

hI be the thickness of the top layer, h2  the thickness of the bottom

layer, and dI = hip d2 = -h Let E be the Young's modulus, G the

shear modulus, and V (Greek letter nu) the Poisson's ratio. Let a and
& be the components of stress and strain, u and w the displacements
along the x and y directions, and a and a the coefficients ofx y
thermal expansion in directions x and y, respectively. The next
section, concerning laminated beams of isotropic materials, is limited
to the consideration of a specific case where the beam is uniformly
heated by raising its temperature t degrees. It is a fundamental case
that can reveal the essential features of thermal-stress problems of
laminated beams; the solution can be used to make comparisons with known
results in the literature. A subsequent section, concerning laminated
beams of orthotropic materials, treats the general case of temperature
distribution.

LAMINATED BEAMS OF ISOTROPIC MATERIALS

In this section we consider a laminated beam consisting of two different
isotropic materials. For plane stress distribution the stress-strain
and strain-displacement relations, the governing differential equation,
and the expressions for stresses in terms of a stress function are [9,10].

& u = 1 (w 1Cx - x-(x-Vay)+ aT, &y =y yy =E x)+ aT

(1)

Ou 8w 1
Yxy By 3x G 'xy

V4q=-EaYV 2T (2)

0 2 -_(3)
0r a

x y2 y x 2  xy Bx3y
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When the laminated beam is uniformly heated, changing the temperature
by t degrees, T. may be expressed as

1

T. = t = 4 sin (n = 1,3,5,..) (4)n nn

Accordingly, the biharmonic function *. for the ith layer which

satisfies equation (2) may be taken as

i= 7 (AniCosh Yy + BniY ysinh yy + C sinh yy
n= 1

+ Dniyy cosh yy)sin yx (n = 1,3,5...) (5)

where Y = n. (6)

The boundary conditions on the top and bottom surfaces of the beam are

0y = 0, Txy = 0, on y = di(d I = hip d2  h 2) (7)

In addition to the preceding boundary conditions, the conditions of
continuity along the line of division of the two layers must be
satisfied. These are the continuity of stress

0yI = ay2' !xyl = Txy2' on y = 0 (8)

where a y and Txyl represent stresses acting on the bottom surface

of the top layer of the beam and ay2  and txy2 are stresses acting on

the top surface of the bottom layer of the beam. The continuity of
displacements across the line of division consists of

uI  u2 , w = w2  on y = 0 (9)

Applying boundary conditions (7) and (8) yields
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A .cosh yd + B yd sinh yd + C .sinh yd + D ydicosh yd
nl i ni i i n i ni i

-0 (I0)

A zA (n2 n1

(An + B + Dn yd)sinh ydi + (Cn + Dn + B ydi)

cosh yd, = 0 (12)

Cn2 + Dn2 =1 nl + Dnl (13)

From equations (1) and (3) we obtain

2ui a 2 a2 2 2
1 1 (1 viit aw) 1 + ov .

x -E (ay 8x i' ay E i  ftx2  i BY2

+ at.t (14)
1

Integrating the two equations of (14) and expressing x as a Fourier
cosine series

2 4£ 1x 2 n yx co (0 C x < .2, n = 1,3,5,...) (15)

nn

we obtain

-1 G
u = i. 7 y{[(l+vi)Ani + 2B nicosh yy + (l+vi)B niyY sinh yy
1I n=l

+ [(1+vi)Cni + 2D ni]sinh yy + (1+vi)D niyy cosh yy

4ta. E.
+-1311 cos + u. (n = 1,3,5 ...) (16)

¥3 Cos x -5
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4M:

-I

w. = - y{(1+vi)Anisinh yy + B ni(1 + vi)yy cosh yy - (1-vi) sinh yy]
1 n=l

+ (l+vi)C nicosh yy + D ni[(l+v iv)yy sinh yy - (1-vi)cosh yy]Jsin yx

+ aity + w0  (n = 1,3,5,...) (17)

Taking the point x = 0 and y = 0 as rigidly fixed so that u. = 0,1

w. = 0 at that point, from equations (16) and (17) we find1

1 W4ta E .

U = - I ¥ 1  + (1+vi)An + 2B ], w = 0 (18)
i n=1,3,...

Applying the continuity conditions (9) uI = u2  and wI = w2  along the
line of division y = 0 yields

E 2  4E2t
[(l+vi)A + 2B] - (+v)A - 2Ba) (19)

E1 n nl 2n2 n2 - 3 2 1

2 [(l+v )C - (1-V )D ] - (1+v )C + (l-v )D 0 (20)

E 1 ni 1 nl 2 n2 2 n2

and

0 0

u2  1U (21)

Solving the eight linear algebraic equations (10) to (13), (19), and
(20), the eight unknown coefficients Ani , Bni , Cn., and Dni can be

expressed in closed forms in terms of elastic moduli, thermal linear
strain, and beam dimensions. For numerical solutions these eight
linear algebraic equations can be easily solved in each particular case
and, once the eight coefficients are determined, the following stresses
can be obtained.
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yi = - 32 .¥ 2 (Anicosh yy + Bniyy sinh yy + C .sinh yy

+ Dniyy cosh yy)sin yx

T - I y2[Anisinh yy + B ni(sinh yy + yy cosh yy)
IxYi  n=1,3,... cos fl)

+ C nicosh yy + D ni(cosh yy + yy sinh yy)]cos yx (22)

= y 2[A ncosh yy + B (2cosh yy + yy sinh yy)
X1ni nix n= 1, 3,...

+ C .sinh yy + D .(2sinh yy + yy cosh yy)Jsin yxni ni

From equation (22) it is seen that one of the traction-free end conditions
.Xi = 0 at x =0 and x = 2 is already satisfied. The second

condition, T i = 0 at both ends of the beam, cannot be satisfiedxyt

exactly without superimposing additional solutions. However, this
condition is satisfied in the sense of Saint Venant's principle. With
this principle we may replace the second condition by its statically

equivalent condition:

y 0, at x 0 and x £ (23)
'-h2

To show that this condition is satisfied, we proceed as follows. Since

Cry . = 0x 2  and T xyi = 0x~y ' the satisfaction of the boundary

conditions 0yi = 0, Txy i = 0, on y = d. and °yl= y2' Txy] = Txy2'

on y 0 implies
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a€i
=0, =0 on y = d.

(24)
and °1 02 o

and $1 2' ay - ay n 0

respectively. But the conditions (24) imply zero resultant shearing
force on any section, x = constant, of the beam. This follows from

F ydy = - [ dy + 0 2 dyl

-h 2 x 5 0 a h2 ay

= ax 0 0 I b (25)ax 1- 2 0 (5

Thus, the load on each end of the laminated beam is self-equilibrating.
The problem of exact satisfaction of end conditions of an elastic strip
has been treated by authors [11,12] in the literature. It is beyond

the scope of this article, however, to modify the solution by satisfying
more precisely the free end conditions of the beam.

LAMINATED BEAMS OF ORTHOTROPIC MATERALS

In the case of plane stress distribution, the stress-strain and strain-
displacement relations for orthotropic materials are [10,13]

y x v V =X a au G V aw
a T +Y , C + a T =-

x E E y x ax y E E x y ayx y y x

(26)

1 au aw
Yxy G xy ay ax

where E , E are the Young's moduli along the principal directions x andx y
y; G = Gxy , the shear modulus which characterizes the change of angles

between principal directions x and y, and Vyx, the Poisson's ratio.
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This ratio characterizes the decrease in Ii-cction x due to tension

in direction y with a similar meaning for the expression vxy, related

to v by
yx

E v : E v (27)y xy v yx

u, w are the displacements along the x and y directions, respectively,

and ax, u represent the coefficients of thermal expansion in principal~y
directions x and y. Solving equations (26) for stresses yields

Ex y0 x 1-v yv [Zx + Vyx y - (ax+ v a )T(x)]
xy yx

E E Eo x xxTx
=-V V [y E- Vyx&x- (ay + V a)T(x)] (28)

xy yx y y

Txy = GYxy

The equations of equilibrium are identically satisfied by introducing

Airy stress function 4 as

2 2 2
I a~ 0 n 1 - a (29)

x 3y2 y ax2  xy axay

The substitution of equations (26) and (29) into the compatibility

relation yields the following governing differential equation for

orthotropic materials

L 1 + 4- - 2T 1 2+Va 42) (30)E 4+(G _EE 4 2 a -i

Ey ax G  x ax2ay 2  x ay ax2  ay

In the general case a complete Fourier series expansion for T (x) is

required. However, the method of solution remains the same whether
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T.(x) is expanded in a complete Fourier Series or a sine or a cosine
1

series. Thus, in the following, only a sine-series expansion is
considered, i.e.,

T.(x) = I t sin nnx (31)
1 ni I

n

in which

t T(x)sin -- dx (32)tni I
f 0

Corresponding to the expansion (31), the particular and homogeneous
solutions for the ith layer, which satisfy equation (30), may be
expressed, respectively, as

.~ *~ k 2 nnx (3fpi = I E (-) sin Y (33)

=1yi yini nil -

hi I (A nicosh nAiy + Bni sinh nAiy +
n=1

+ C cosh np.y + D sinh npiy)sin nnx(34)
ni 1 ni 1 9.

in which Ani, Bni , Cni , Dni are arbitrary constants and

yi

(35)
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1i=£ E . i " i
yi

S2v
where K. EE (I - )

1 xiyi G. E
I X1

The general integral of equation (30) is the sum of the solutions (33)
and (34), i.e.,

0i = Opi + 0hi (36)

In the special case where the two roots A. and pi of equation (35)

are real and equal (i.e., K. = 1), the following solution of equation (30)

should be used instead of the solution (34).

I 2 [Ani + B ny)cosh nXiy + (Cni + D ny)sinh n y isin X (37)
n=l ni ni 1

Having obtained solution (36) we will be able to show that all the
boundary conditions (7), (8), and (9) can be satisfied. Applying the
boundary conditions (7) and (8) yields, respectively, 4

A ni. cosh n idi + B ni. sinh n idi + C ni. cosh npid.

+ D .sinh nP.d.= - E ot 2 (38)ni idii m ym ni niT, (n= 1,2,...)

xi(A nisinh nA d + B .cosh hA d .)11im i ni 1 1

+ Pi(C nsinh npid i + D cosh npidi) = 0, (n = 1,2,...) (39)
1 ni. m. 1 nic 1 1
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(.C 2 (Anl Cn1 - n2 -C 2 = (Ey2 a 2tn2 -Eyat Y , 12..)

(40)

A2Bn2 + ,n2 1 A I + pID1 (n = 1,2,...) (41)

From equations (26) and (29) we obtain

;)u. 120i 02 C
__i I (O- Vx i - ) +  C, Tit

5-x Exi 3Y xi8x 2  xi

aw. 1 820i ,2 0
1 + a .T. (42). i Oay Ey 28- Vyxi -y2 )  y i i  (42

yi. ax2  ayYl

Integrating the two equations of (42) yields

u nE i n[(A + Vxyi  2)(AniCosh nA i + B nisinh nX.y)
xi n1l 2y i

22

+ (p + V e)(C ncosh npiy + D sinh npiY) (43)

t.
ni(E Of + v .E a .)]Cos -n + u0

2- Exixi xyi yi yi] +
n

-1 2
- n ( h -1 -) (Anisinh nAiy + B .cosh nAiy)

E. = Eyin i 2

+ 1 2

+ (2 ). . nnxiL (vyxi i  - (Cnsinh npiy + D ncosh npy)}sin - (44)
1i yi 2 1i fl 1i 2
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0
in which the constant u. can be determined by taking the point x = 0i

and y = 0 as rigidly fixed in order to have u. =0, w. = 0 at x = 0,
1 1

y = 0. Applying the continuity conditions (9) u= u2  and w= w2

along the axis y = 0 yields

(2_ l. + ]A + [(2)2 Ex2 1('k2')
xy2 r2 xy2 n2 EX1

]A + [ -) + V IC +(L) -2 ExE

xyl nl -- xyl n1 n Ex2  n2Ex2 x2 xy2 y2 y2

- tn (Ex1ax1 + VxylEylay)] } = 0 (45)

+r + i)2+ = Y r(n~-)2

X2 [( )2 + ( ) 2 IyV D Ey2 Ixn
2 yx2]n2 2 P2 Vyx2]n2 yl 1 12

+ Vyxl]BnI + P [(--- )2 + v ID 1 (46)yxn pl yxl]Vnl

1

and also u = u (47)

The eight arbitrary coefficients Ani , Bni , Cni, and Dni are determined

from the eight linear algebraic equations (38) to (41), (45), and (46)
and then the stresses can be obtained from the following expressions:

o = - t(-)2 [A cosh nAiY + B nSinh nX y
n=1 ni 1 ni 1

+ C cosh npiy + D sinh npiyj + E ya yt isin Enfx (48)
ni fl 1i i y i ni

Txyi = n [n2  (A nsinh nAiy + B cosh nX y)
19 fli 1i 11 1i

-13-



" (C nsinh npiy + D ncosh npiY)]cos (49)

x I = 1 n 2[A(A .cosh nAiy + B nsinh nAiY)
n= 1

" P2 (Ccosh n y + D .sinh np]y)]sin -! (50)
S ni nl £

NUMERICAL EXAMPLE AND CONCLUSIONS

CASE A: TWO LAYERED BEAMS HAVING RIGID BOND

The following material constants and beam dimensions are used:

£ = 90 cm., h I = h2 = 5 cm., to = 4000 C = 7520 F

6 2 -6V1 = 0.27 E 1 = 20.69x10 N/cm2
. a1 = 6.5x10 /F0,

V2 = 0.33, E2 = 6"89x106 N/cm 2., a2 13x10 6/F0,

Figures I and 2 show the distributions of interlaminar normal and shear
stresses, respectively, along the longitudinal axis of the beam. Both
indicate that high stress intensity occurs in the end zones of the beam
and that both stresses decay rapidly with increasing distance from the
ends. The distribution of the stresses in the end zones within a distance
equal to the thickness of each beam, may not be very accurate, especially
for the shear stress. However, the results in figures I and 2 show that
both stresses do increase toward the ends of the beam, starting from a
distance greater than the thickness of each layer. Thus, it may be con-
cluded that delamination failure, when it occurs, will start at the ends
of the beam.

'Figures 3 and 4 show the distribution of axial stress along the bonding
surface of the upper layer and the lower layer, respectively. The
bonding surface of the upper layer is under tension and that of the
lower layer under compression. Within a short distance from the free
ends of the beam, the axial stress of the upper layer (Fig. 3) reaches
its maximum value and the axial stress of the lower layer (Fig. 4)

-14-



reaches a value slightly less than its maximum value. Both then
remain constant for the remainder of the beam. Other observations
which could be made for Case A will be described later as observa-
tions for Case B.

CASE B: TWO LAYERED BEAMS HAVING AN ELASTIC BOND BETWEEN THE
LAYERS (FIG. 5)

The material constants and beam dimensions for the two layers are the
same as those used in the Case A. The following constants are taken
for the thin bonding material between the layers:

h3 = .33 cm., V3 = .33, a3 = 2.5xlO-
6/F0,

Three cases of different modulus of elasticity of the bonding mate-
rial are considered, i.e.,

(1) E3 = 27.58xi06 N/cm., (2) E = 4x106 N/cm
3 = 3

16 2
(3) E3 = 10 N/cm .

We note that the constant c appearing in figures 1-4 and the con-
stant C in figures 6 through 13 are related as

C = E2(a2-a1 )c = 44.785c.

The observations and conclusions made in the previous Case A also hold
true for the present case. In addition, other observations can be made
from figures 6 through 13. Figures 6 and 8 illustrate that the modulus
of elasticity of the bonding material (adhesive) affects the interlaminar
normal stress only in the narrow end regions, these regions being of the
order of the thickness of the beam. A larger modulus of elasticity in
the bonding material yields significantly larger interlaminar normal
stress in the end regions. However, the interlaminar normal stress is
virtually unaffected by the modulus of elasticity of the adhesive for
the remainder of the beam. Thus, if delamination failure should occur,
it will occur at the ends of the beam. To prevent such failure, adhe-
sives having smaller modulus of elasticity should be preferred.

It is of interest to note that the modulus of elasticity of the bonding
material has only a slight effect on the distribution of the interlaminar

-15-



shear stress as seen from figures 7 and 9, except perhaps in a very short
distance from the ends of the beam. However, in this region the distri-
bution of the shear stress is not accurate, as previously pointed out.
An examination of figures 3, 4, 10 and 11 indicates that the modulus of
elasticity of the bonding material has only slight effect on the axial
stress in the upper and lower layers of the beam. On the other hand,
the modulus of elasticity of the bonding material has significant effect
on the axial stress in the bonding material as seen from figures 12 and
13; a greater modulus yields significantly larger axial stress. We
further note that the maximum axial stress in the upper and lower
layers of the beam is greater than that of the interlaminar normal
stress. However, delamination failure of the bond caused by the
interlaminar normal stress may still occur, as is often the case in
practice, if the bond cannot sustain the required interlaminar normal
stress.

The computer program developed for the numerical calculations is
presented in the Appendix.

I
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y BONDING MATERIAL (ADHESIVE)

hi

-4

Figure 5. - Two-layered beam having an elastic bond between the layers.
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APPENDIX- -THERMAL STRESSES ALONG BEARING SURFACES OF A TWO-LAYER

@,GS , PISOTROPIC BEA- -A COMPUTER PROGRAM

PLOTTER PEN/LIO
*FORPIS MAIN

IMPLICIT DOUBLE PRECISION (A-HrO-Z)
COMMON/BLK2/ N
COMMON/BLK3/ NUMLAY
COMMON/BLK7/NTERMS
COMMON/BLK12/X(301 ),Y(301)
COMMON/BLK(13/CC (8,1)
COMMON/BLK2Of AA(8,8),BB(8,1)
CALL MTAMDF (AA,8,8, 'D',8p8, 'GEN')
CALL MTAMDF (BB,8,1, 'D',8,1, 'GEN')
CALL MTADEF (CC,8,1,'D')

C
C THIS PROGRAM CALCULATES THE STRESSES AT THE INTERFACE OF THE TWO
C ISOTROPIC LAYERS CYC =0.). THE NORMAL# SHEAR, AND AXIAL STRESSES
C ARE PLOTTED FOR THE UNIFORM TEMPERATURE C1SE.
C
C READ THE LAST FOURIER TERM TO BE USED. (SHOULD BE ODD) (M'I

READ (5,201) NIERMS
CALL INPUT
WRITE (6p290) NIERMS

YC .0
DO 210 N = ,NTERmS,2
CALL DETMAT
CALL SOLVE
CALL COEF(I,'YC)

210 CON T INUE
NPOINT =51
XSTART =0.
XEND =.1
CALL. STRESY (1,I,NPOIN4T,YC,XSTART,XEND)
CALL GRAPH (X,.?,Y,.2,NPOINT,'NONE','SOLID','1 X/L S$',I $$I

1, 'NORMAL', 'NORMAL STRESSSS', 'FULL', 'BIND')
XEND =.05I CALL STRESY C?, I,NPOINT,YC,XSTART,XEND)

CALL GRAPH (X,42,Y,+2,NPOINT,'NONE',SSOL1D',I X/L $',I WS
1, 'NORMAL', 'SHEAR STPESSIS', 'FULL', 'BIND')
XEND =.08
CALL SIRESY (3,1,NPUINT,YC,XSTART,XE14D)
CALL GRAPH (X,I?,Y,42,NPOJNTp'NONL','50LID',' X/L S$',' $s'
1, 'NORMAL', 'AXIAL STRfSS$$', 'FULL', 'BIND')
CALL STRESY (3,2,NPOINT,YC,xSTAHT, XEND)t
CALL GRAPH (X,.?,Y,.2,f4POINT,'r40NE','SOLID',' X/L S'l, $So
1NORMAL','AXIAL STRLSS%$', 'FULL', 'BIND')

299 STOP
201 FORMAT (14)
290 FORMAT (IXr//,30X,'Tf4E LAST FrJURILR TERM= ,4

END
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PFORIS INPUT
SUBROUTINE INPUT
IMPLICIT DOUBLE PRECISION (A-HO-Z)

C THIS ROUTINE READS THE MATERIAL PROPERTIES FOR THE 2 OR 3 ISOTROPIC
C LAYERS WHICH ARE UNDER A UNIFORM TEMPERATURE DISTRIBUTION.

COMMON/BLKI/E1,E2,E3,XNU,XNU2,XNU3,ALPHAI,ALPHA2,ALPHA3,BETAI,

IBETA2,BETA3
COMMON/BLK3/ NUMLAY
COMMON/RLKB/XLEN
COMMON/BLKIO/DELTA(3)

C
C IF ONLY TWO LAYERS ARE TO BE CONSIDERED, THE CONSTANTS FOR LAYER
C NUMBER 3 SHOULD BE SET EQUAL TO ZERO.
C READ THE NUMBER OF LAYERS. (FIRST COLUMN IN INPUT CARD)

READ (5,100) NUMLAY
WRITE (6,180)
wRITE (6,190) NUMLAY

C
C READ THE MATERIAL PROPERTIES. (3F20.8)

WRITE (b,181)
READ (5,101) EI,E?,E3
WRITE (6,191) EI,E2,E3
READ (5,101) XNUIXNU2,XNU3
wRITE (6,lq2) XNUI,XNLU2,XtjU3
READ (5,101) ALPHAlALPHA2,hLPHA3
WRITE (6,193) ALPHAIALPHA?,ALPHA3

C
C READ THE THICKNESS OF EACH LAYER.

READ (5,101) (DELTA(I),I=1,3)
WRITE (6,1o4) (DELTA(I3,I=:1,)

C XLEN =' THE LENGTH OF THE BEAM/PI.
READ. (5,101) XLEN
ARITE (6,195) XLEN
BETAI = DELTA(1)/XLEN
BETA2 = DELTA(2)/XLEN
BETA3 = DELTA(3)/XLEN
RETURN

100 FORMAT (JI)
101 FOR1MAT (3F20.8)
160 FUR14AT ('1°,37X,THERMAL STRESSES IN LAMINATED BEAMS OF ISOTROPIC

IMATERIALS',//)
181 FORMAT (IX,//,45X,'LAYER 1°,13x,'LAYER 21,13X,'LAYER 3')
190 FORMAT (JX,//,tJ5X,'NUriBER OF ISOTROPIC LAYERS = ,If,//)
191 FORMAT (IX,//,1OXpYOUNG S tIODULnUS,1X,E15.5,2(SX,E15.5))
192 FORMAT (IX,//,IOX,'POISSUN S RATIU',I3X,E15.5,2(5X,F15.5))
193 FORMAT (X,//,0X,'THLRlAAL EXPANSION COEF',bX,E1S.5,2(5X,EIS.S))
194 FORMAT (IX,//,lOX,'THICKNFSS ', 8X,E15.5,2(SXE15.5))
195 FORMAT (IX,////,30X,'(8fAM LENGTH) / P1 = ',E15.5)

END
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FOR,IS DETMAT
SUBROUTINE DETMAT
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

C THIS SUBROUTINE D.ElERMINES THE MATRICIES FOR THE TWO LAYER ISOTROPIC
C AND UNIFORM TEMPERATURE CASE
C

COMMON/BLK I/E 1, E2, E3, XNUI ,XNU2, XNLJ3, ALPHA1 ,ALPHA2, ALPHA3, BETAI,
IBETA2,BETA3
COMMON/BLK2/ N
COMMON/BLK'/A(8,8),B(8)

C
IF (N.GT.1) GO 10 10
DI = E2/E1
D2 1 1. + XNUI
D3 ="1. + XNLI2
DO 1 I = 1,8
H(I) = 0.
DO 2 J 1,8
A(I,J) 0.

2 CONTINUE
I CONTINUE

A(I,I) = 1.
A(2,5) = 1.
A(3,3) = 1.
h(Lie7) =-1.

A(5,l) 1.
4(5,5)= -1.
A(b,3) 1.
A(b6, ) = .
A(6,T) = - .
A(6,8) 8 -1
A(8,3) L I*D2
A(7,1) A(8,3)

A(7,?) 2.*D1
A(7,5) -I.*D3
A(7,b) -2.
A(8,) -I.*D1*(I. - XNUI)
A(8,7) = A(7,5)
A(8,8) = 1. - XNU2

10 XN N
BIN XN*BETAt
32N XN*BFTA2
THI -UrAN!H(B1N)
IH2 :DT4IH(82N)
A(1,2) = BIN*THI
A(1,3) = THI
A(1,4) = BIN
A(3,|) THI
A(3p2) BIN + THI
A(3,4) 1. + A(1,2)
A(2,6) H2N*TH2
A(2 (,7 -1.**H2
A(2,8) -I. * r2N
A(0,S) TH2
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A(4,6) = B2N + TH2
A(p,8) = -1, - (B2N*TH2)

B(7) = I./XN
RETURN

END

@FOR,IS SOLVE
SUBROUTINE SOLVE
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

C THIS SUBROUTINE SOLVES THE MATRIX EQUATIONS FOR A GIVEN N FOR THE
C TwO OR THREE LAYER CASE. THE REQUIRED INPUT IS THE FOURIER NUMBER NJ
C THE NUMBER OF LAYERS NUMLAY, AND THE MATRIX A AND VECTOR B FROM
C SUBROUTINE DETMAT. THE MACC SUBROUTINE MTSOLV IS UTILIZED.
C THE SOLUTION VECTOR IS CC(K,1).

COMMON/BLK2/ N
COMMON/BLK3/ NUMLAY
COMMON/BLKU/AMAT(8,8),BVEC(8)
COMMON/RLK13/CC(8,I)
COMMON/BLK20/ AA(8,8),BB(8,1)
MATSIZ = *NUMLAY
DO '10 I = 1,MATSIZ
BB(I,1) = BVEC(1)
DO 420 J = 1,mATSIZ
AA(I,j) = At-AT(IJ)

420 CONTINUE
410 CONTINUE

CALL MTSLVD (AA,BB,CC,IRET)
299 RETURN

END

£FOP,IS COEF

SUPROUTINE COEF(JYC)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

C THIS SUBROUTINE DETERMINES THE FOURIER COEFFICIENTS FOR THE STRESSES
C IN THE I TH LAYER ON Y = 0.

COMMON/BLK2/ N
COMMON/BLK8/XLEN
COMMON/BLK13/BB(8,1)
COMtMON/BLKI1/COEFN(1800),COEFS(1800),COEFA(100, 2)
ZN N
M (N + 1)/2

COEFN(M) = 8B(1,1)
COEFS(M) = 3B(3,1) t 8B(4,1)
COEFA (M,1) = BB(II) + 2.*BB(2,1)
COEFA (M,2) = RB(5,J) + 2.ABS(6,1)
RETURN
END

tFUR,IS STRESY
SUBROUTINE STFESY (ITYPE,T,NPOINT,YC,XSTART,XEND)
IMPLICIT DOUBLE PRECISION (A-HO-Z)
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C THIS SUBROUTINE COMPUTES THE NORMAL, SHEAR, OR AXIAL STRESSES ON
C THE LINE Y = O AT NPOINT NUMBER OF POINTS FROM X = XSTART TO X
C XEND, (X = 0 TO I IS THE ENTIRE LENGTH OF THE BEAM) IF ITYPE = It
C THE NORMAL STRESS IS COMPUTED, IF ITYPE = 2, THE SHEAR STRESS IS
C COMPUTED, OR IF ITYPE = 3s THE AXIAL STRESS IS COMPUTED. THE (X#Y)
C COORDINATES ARE RETURNED IN THE VECTORS X AND Y. THESE STRESSES
C ARE CALCULATED FOR THE I TH LAYER.

COMMON/BLK7/NTERMS
COMMON/BLK8/XLEN
COMMON/BLKI2/X(301),Y(30I)
COMMON/BLK 1/COEFN( 1800)COEFS(1800),COEFA(1800,2)
IF (ITYPE.EQ.2) GO TO 600
IF (ITYPEEO.3) GO TO 611
WRITE (6#691) YC
GO TO 601

600 WRITE (6,692) YC
GO TO 601

b11 WRITE (6,671) YC
601 NRITE (6,b93) I,NPOINT

WRITE (6,694) XSTARTXEND
C THIS IS DONE SO BOTH END POINTS WILL BE PLOTTED , HOWEVER, IF NPOINT
C 1, THIS ROUTINE WILL FAIL.

XPOINT = NPUINT - I
C

PI = 3.1415926536
IF (ITYPE.Eg.2) GO 10 755
IF (ITYPE.EQ.3) GO TO 756
DO 700 J = 1,NPOINT
ZJ =J - I
x(J) ZJ*(XEND - XSTART)/XPOINT + XSTART

ARG X(J)*PI
XSUM = 0.

DO 720 N = 1,NTERMS,2
M = (N + 1)/2
XN = N
XSUM = XSUM + COEFN(M)*DSIN(ARG*XN)

720 CONTINUE
Y(J) = -1.*XSUM

700 CONTINUE
GO TO 770

756 DO 701 J = INPOINT
ZJ = J - 1
X(J) = ZJ*(XEND - XSTART)/XPOINT + XSTART
ARG = X(J)*PI
XSUM = 0,

DO 721 N = 1,NTERPS,2
M = (N + 1)/2
XN = N
XSUM = XSUM + COEFA(MI)*DSIN(ARG*XN)

721 CONTINUE
Y(J) = XSUM

701 CONTINUE
GO 10 770

755 DO 710 J = 1,rNPOINT
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ZJ = J -
X(J) = ZJ*(XEND - XSTART)/XPO1NT * XSTAR1
ARG = X(J)*PI
XSUM = 0,

DO 730 N = 1,NTERMSr2
M = (N + 1)12
XN = N
XSUH = XSUM + COEFS(M)*DCOS(ARG*XN)

730 CONTINUE
Y(J) = -1.*XSUM

710 CONTINUE
770 RETURN
69 FORMAT (IX,///,20XITHIS STRESS IS TO BE PLOTTED FROM X ttF6,'

I TO ',F6.3)
691 FORMAT (1Xo/////#2OXf'THE NORMAL STRESS ON THE LINE Y = l#F6.3,

I IS PLOTTED 1)
692 FORMAT (1Xr/////,20X,'THE SHEAR STRESS ON THE LINE Y = ',F6.3*

It IS PLOTTED ')
671 FORMAT (1X,/////,2OX.STHE AXIAL STRESS ON THE LINE Y = *rF6.3#

11 IS PLOTTED 1)
693 FORMAT (20X,'FOR LAYER NUMBER '1,1 o THE NUMBER OF POINTS PLOT

ITED IS 'IJ,' °l)
780 FORMAT (13)
781 FORMAT (FI0.5)
790 FORMAT (1X,4OXf'NUMBER OF POINTS TO BE PLOTTED =113)
791 FORMAT (IX,4OX,' LENGTH OF BEAM TO BE PLOTTED 0,F6.3)

END
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